Home
Class 12
MATHS
The limit lim(x->oo) x^2 int0^x e^(t^3)...

The limit `lim_(x->oo) x^2 int_0^x e^(t^3)-x^3 dt` equals

A

`1/3`

B

2

C

`prop`

D

`2/3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The limit lim_(x rarr oo)x^(2)int_(0)^(x)e^(t^(3))-x^(3)dt equals

Calculate the reciprocal of the limit lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

lim_(x rarr 0)(int_0^x tsin(10t)dt)/x is equal to

lim _( x to 0) int _(0)^(x ) (e ^(sin (tx )))/(x )dt equals to :

The value of lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt equals :

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals