Home
Class 12
MATHS
Let C0 be a circle of radius 1. For n ge...

Let `C_0` be a circle of radius 1. For `n ge 1` let `C_n` be a circle whose area equals the are of a square inscribed in `C_(n-1)` Then `sum_(i=0)^(oo) Area C_i` equals (A) `pi^2` (B) `(pi-2)/pi^2` (C) `1/pi^2` (D) `pi^2/(pi-2)`

A

`pi^2 `

B

`(pi -2)/(pi^2)`

C

`1/pi^2`

D

`pi^2/(pi - 2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let C_(0) be a circle of radius 1. For n>=1 let C_(n) be a circle whose area equals the are of a square inscribed in C_(n-1) Then sum_(i=0)^(oo)Area C_(i) equals (A) pi^(2)(B)(pi-2)/(pi^(2))(C)(1)/(pi^(2))(D)(pi^(2))/(pi-2)

sin^(-1)(0) is equal to : (a) 0 (b) pi/6 (c) pi/2 (d) pi/3

Area of circle inscribed in the equilateral /_\ABC is (A) 2/3 piR^2 (B) 1/4 pi R^2 (C) 1/3 pi R^2 (D) none of these

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi

The area of the circle that can be inscribed in a square of side 10 cm is (a) 40pi\ c m^2 (b) 30pi\ c m^2 (c) 100\ pi\ c m^2 (d) 25\ pi\ c m^2

If the circumference and the area of a circle are numerically equal, then diameter of the circle is (a) pi/2 (b) 2pi (c) 2 (d) 4

A circle is inscribed in a square of side 14m. The ratio of the area of the circle and that of the square is pi:3 (b) pi:4 pi:2 (d) pi:1

int_(0)^(oo)(xdx)/((1+x)(1+x^(2))) is equal to (A)(pi)/(4) (B) (pi)/(2)(C)pi(D) none of thesel

A circle has a radius of log_(10)(a^(2)) and a circumference of log_(10)(b^(4)). The value of log_(a)b is equal to (a)(1)/(4 pi) (b) (1)/(pi) (c) pi (d) 2 pi