Home
Class 12
MATHS
The function L(x)=int(1)^(x)(dt)/t satis...

The function `L(x)=int_(1)^(x)(dt)/t` satisfies the equation

A

`L(x + y) = L(x) + L(y)`

B

`L(x/y) = L(x) + L(y)`

C

`L(xy) = L(x) + L(y)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The interval in which the function f(x)=int_(0)^(x) ((t)/(t+2)-1/t)dt will be non- increasing is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

If f(t) is an odd function,then varphi(x)=int_(a)^(x)f(t)dt is an even function.

Let the function x(t) and y(t) satisfy the differential equations (dy)/(dt)+ax=0,(dy)/(dt)+by=0. If x(0)=2,y(0)=1 and (x(1))/(y(1))=(3)/(2), then x(t)=y(t) for t=

Find the differentiable function which satisfies the equation f(x)=-int_(0)^(x)f(t)tan tdt+int_(0)^(x)tan(t-x)dt where x in(-(pi)/(2),(pi)/(2))