Home
Class 12
MATHS
The solution for x of the equation int...

The solution for x of the equation
`int _(sqrt2) ^(x) (dt)/( sqrt(t ^(2) -1))= (pi)/(12)` is

A

2

B

`pi`

C

`sqrt3/2`

D

`2 sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution for x of the equation int _(sqrt2) ^(x) (dt)/( tsqrt(t ^(2) -1))= (pi)/(12) is

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(sqrt(t^(2)-1))=(pi)/(2) is pi(b)(sqrt(3))/(2) (c) 2sqrt(2) (d) none of these

The solution for x of the equation int_(sqrt(2))^(x)(1)/(tsqrt(t^(2)-1))dt=(pi)/(2) , is

" (a) "int(dt)/(sqrt(1-t^(2)))

int(dt)/(sqrt(3t-2t^(2)))

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=