Home
Class 12
MATHS
The value of integral int (1//pi)^(2//p...

The value of integral ` int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=`

A

2

B

`-1`

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1//pi)^(2//pi)(sin(1//x)+cos(1//x))/(x^(2))dx=

Evaluate the integrals : I = int_(1//pi)^(2//pi) (sin""(1)/(x))/(x^(2)) dx ,

The value of integral int _(0)^(pi) x f (sin x ) dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

The value of integral int_(-pi)^(pi) (cos ax-sin b x)^(2)dx , where (a and b are integers), is

If f(x)=x+sin x and I denotes the value of integral int_(pi)^(2 pi)((f^(-1))(x)+sin x)dx then the value of [(2I)/(3)]( where [-] denotes greatest integer function)

The value of the integral int_(0)^(pi) | sin 2x| dx is