Home
Class 12
MATHS
The value of int(8 log(1+x))/(1+x^(2)) d...

The value of `int(8 log(1+x))/(1+x^(2)) dx` is

A

`pi log 2`

B

`pi//8 log 2`

C

`pi//2 log 2`

D

`log 2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1 (8log(1+x))/(1+x^2) dx is:

The value of int_0^1(8log(1+x))/(1+x^2)dx is a. pilog2 b. \ pi/8log2 c. \ pi/2log2 d. log2

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is: (1)pi log2 (2) (pi)/(8)log2(3)(pi)/(2)log2(4)log2

The value of int_(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

int(log(1+x))/(1+x)dx

int(log(1-x))/(1-x)dx

" "int(log x)/((1+x)^(2))dx

int((log x)/((1+log x)^(2)))dx