Home
Class 12
MATHS
Let f(x)= int(1)^(x) sqrt(2-t^(2)) dt. T...

Let `f(x)= int_(1)^(x) sqrt(2-t^(2)) dt`. Then the real roots of the equation `x^(2)- f'(x)= 0` are

A

`pm 1 `

B

`pm 1/sqrt2`

C

`pm 1/2`

D

`0 and 1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4 . Then the range of f (x) is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If int_(0)^(x^(2)) sqrt(1=t^(2)) dt, then f'(x)n equals

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=