Home
Class 12
MATHS
The integral int(1)^(e){((x)/(e))^(2x)-...

The integral `int_(1)^(e){((x)/(e))^(2x)-((e)/(x))^(x)} "log"_(e)x` dx is equal to

A

`3/2 - 1/e - 1/(2e^2)`

B

`3/2 - e - 1/(2e^2)`

C

`1/2 - e 1/e^2`

D

`-1/2 + 1/e - 1/(2e^2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int e^(x log a) e^(x) dx is equal to

The value of the integral int_(-1)^(1){(x^(2013))/(e^(|x|)(x^(2)+cosx))+(1)/(e^(|x|))}dx is equal to

int(e^(x)(x log x+1))/(x)dx is equal to

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int _(1) ^(e ) (dx )/(ln (x ^(x) e ^(x)))