Home
Class 12
MATHS
lim(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+(...

`lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3)))` is equal to

A

`3/4 (2)^(4//3) - 3/4`

B

`3/4 (2)^(4//3) - 4/3`

C

`4/3 (2)^(4//3)`

D

`4/3 (2)^(3//4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

lim_ (n rarr oo) ((n-1) (n-2) (n-3)) / (n ^ (3))

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)((4+3n+n^(6))^((1)/(3)))/(1+3n+2n^(2))

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))