Home
Class 12
MATHS
The integral int(pi//6)^(pi//3)sec^(2//...

The integral `int_(pi//6)^(pi//3)sec^(2//3)x " cosec"^(4//3)x` dx is equal to

A

`3^(5//3) - 3^(1//3)`

B

`3^(5//6) - 3^(2//3)`

C

`3^(4//3) - 3^(1//3)`

D

`3^(7//6) - 3^(5//6)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3)cos^(2)x dx=

Value of int_(pi/6)^( pi/3)sec^(2/3)x*cos ec^(4/3)xdx is

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi//6)^(pi//4)cosec 2x dx=

int_(pi//6)^(pi//4)(sec^(2)x+cos^(2)x)dx=

The integral int sec^(2//3) "x cosec"^(4//3)"x dx" is equal to (here C is a constant of integration)

int sec^(4)x cosec^(2)x dx is equal to

int_(-pi//4)^(pi//4) "cosec"^(2) x dx

int_(pi/6)^( pi/3)sin(3x)dx