Home
Class 12
MATHS
If f(a+b-x)=f(x), then int(a)^(b)x f(x)d...

If `f(a+b-x)=f(x)`, then `int_(a)^(b)x f(x)dx=`

A

`(a + b)/2 int_a^b f(b - x) dx`

B

`(a + b)/2 int_a^b f(x) dx`

C

`(b - a)/(2) int_a^b f(x) dx`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is

int _(a) ^(b) f (x) dx =

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

int_(a + c)^(b+c) f(x)dx=

f(a+b-x)=f(x)(,)_(t)hen int_(a)xf(x)dx

If f(a+b-x)=f(x), then prove that int_(a)^(b)xf(x)dx=(a+b)/(2)int_(a)^(b)f(x)dx

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

If f(x)=x^(3) show that int_(a)^(b)f(x)dx=(b-a)/(6){f(a)+4f((a+b)/(2))+f(b)}