Home
Class 12
MATHS
The integral int(-1//2)^(1//2) ([x] + ln...

The integral `int_(-1//2)^(1//2) ([x] + ln ((1+x)/(1-x)))dx` equals

A

`-1/2`

B

`0`

C

`1`

D

`2 log"" 1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_( -1//2)^(1//2) {[x]+ in ((1+x)/(1-x))} dx equals

The integral int_(-(1)/(2))^((1)/(2))([x]+log((1+x)/(1-x)))*dx equals

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

int_(-1//2) ^(1//2) (cos x ) log ((1-x)/(1+x)) dx =

Evaluate the following integrals: int_(-1/2)^(1/2) cos x log ((1+x)/(1-x))dx

int_(-1//2)^(1//2)(cosx)[log((1-x)/(1+x))]dx is equal to

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is