Home
Class 12
MATHS
If int(sin x)^(1) t^(2) f(t) dt =1- sin ...

If `int_(sin x)^(1) t^(2) f(t) dt =1- sin x, x in (0, (pi)/(2))` then `f((1)/(sqrt3))` equal to

A

`3`

B

`1/3`

C

`1/sqrt3`

D

`sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(sinx)^(1) t^(2)f(t)dt=1-sinx " for all " x in [0,pi//2] , then f((1)/(sqrt(3)))=

Ifint_(sin x)^(1)t^(2)f(t)dt=1-sin x, wherex in(0,(pi)/(2)) then find the value of f((1)/(sqrt(3)))

If int_(cos x)^(1)t^(2)f(t)dt=1-cos x AA x in(0,(pi)/(2)) then the value of [f((sqrt(3))/(4))] is

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

f(x)=int_(0)^(x)(e^(t)-1)(t-1)(sin t-cos t)sin tdt,AA x in(-(pi)/(2),2 pi) then f(x) is decreasing in :

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If int_(0)^(x^(3)(1+x))f(t)dt=x then f(2) is equal to