Home
Class 12
MATHS
The number of all continuous positive fu...

The number of all continuous positive functions `f` defined on the interval `[0, 1]` such that `int_0^1\ f(x)dx = 1;\ int_0^1\ f(x)* x\ d x = alpha and int_0^1\ f(x)*x^2\ dx= alpha^2 `(where `alpha` is a given real number)

A

`0` s

B

`a^2`

C

`a^2 - 1`

D

`a^2 - 2a + 2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a non-negative function defined on the interval .[0,1].If int_0^x sqrt[1-(f'(t))^2].dt=int_0^x f(t).dt, 0<=x<=1 and f(0)=0,then

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

IF int_(-2)^5 f (x)dx =4 and int_0^5{1+f (x)} dx=7 then what is int_(-2)^0 f(x) dx equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

Let f(x) be a differentiable function in the interval (0,2) , then the value of int_0^2 f(x) dx is :

Property 6: If f(x) is a continuous function defined on [0;2a] then int_(0)^(2)a=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx