Home
Class 12
MATHS
Let F (x) = f(x) + f ((1)/(x)), where f ...

Let `F (x) = f(x) + f ((1)/(x)),` where `f (x) = int _(1) ^(x ) (log t)/(1+t) dt.` Then F (e) equals

A

`1//2`

B

`0`

C

`1`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))