Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppose...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is `3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2 I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let T>0 be a fixed real number.Suppose f is continuous function such that for all x in R,f(x+T)=f(x)* If I=int_(0)^(T)f(x)dx then the value of int_(3)^(3+3T)f(2x)dx is (a) (3)/(2)I( b) 2I( c) 3I(d)6I

Let Tgt0 be a fixed real number. Suppose f is a cintinuous function such that f(x+T) = f(x) "for all" x in R . If I=int_(0)^(T) f(x)dx, then the vlaue of int_(3)^(3+3T) f(2x)dx is

I=int_(0)^(T)f(x)dx, then show that int_(3)^(3+3T)f(2x)dx=3I

Let f:R to R be continuous function such that f(x)=f(2x) for all x in R . If f(t)=3, then the value of int_(-1)^(1) f(f(x))dx , is

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let: f:[0,3]vecR be a continuous function such that int_0^3f(x)dx=3. If I=int_0^3(xf(x)+int_0^xf(t)dt)dx , then value of I is equal to