Home
Class 12
MATHS
Let f and g be continuous functions on ...

Let f and g be continuous functions on [ 0 , a] such that `f(x)=f(x)=f(a-x)andg(x)+g(a-x)=4`, then `int_(0)^(a) f(x)g(x) `dx is equal to

A

`4 int_0^a f(x) dx`

B

`-3 int_0^a f(x) dx`

C

`2 int_0^a f(x) dx`

D

`int_0^a f(x) dx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f and g are continuous functions on [0,a] such that f(x)=f(a-x) and g(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx

If f and g are continuous functions on [0,pi] satisfying f(x)+f(pi-x)=g(x)+g(pi-x)=1 then int_(0)^( pi)[f(x)+g(x)]backslash dx is equal to

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?

If f(x) and g(x) be continuous functions in [0,a] such that f(x)=f(a-x),g(x)+g(a-x)=2 and int_0^a f(x)dx=k , then int_0^a f(x)g(x)dx= (A) 0 (B) k (C) 2k (D) none of these

If fandg are continuous function on [0,a] satisfying f(x)=f(a-x)andg(x)+g(a-x)=2 then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx