Home
Class 12
MATHS
Let I=int(a)^(b)(x^(4)-2x^(2))dx. If I i...

Let `I=int_(a)^(b)(x^(4)-2x^(2))dx`. If I is minimum then the ordered pair (a, b) is:

A

`(0, sqrt2)`

B

`(sqrt2, - sqrt2)`

C

`(-sqrt2, sqrt2)`

D

`(-sqrt2, 0)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_(0)^(2)x sqrt(4-x^(2))dx

I=int_(0)^(4)(x^(2)+2x+4)dx

Let I = int_(1)^(3)sqrt(x^(4)+x^(2)) , dx then

Let I=int_(0)^(1)(x^(3)cos3x)/(2+x^(2))dx, then

If a lt int_(0)^(2pi)) (1)/(10+3 cos x)dx lt b . Then the ordered pair (a,b) is

Let I=int_(a)^(b)(x^(4)-2x^(2))dx for (a,b) which given integration is minimum (b>0)(a)(sqrt(2),-sqrt(2))(b)(0,sqrt(2))(c)(-sqrt(2),sqrt(2))(d)(sqrt(2),0)

I=int cos^(2)((x)/(4))dx

Let I_(n)=int tan^(n)xdx,(n>1). If I_(4)+I_(6)=a tan^(5)x+bx^(5)+C, where C is a constant of integration,then the ordered pair (a,b) is equal to :