Home
Class 12
MATHS
Consider a region R={(x,y) in R^(2):x^(2...

Consider a region `R={(x,y) in R^(2):x^(2) le y le 2x}`. If a line `y= alpha` divides the area of region R into two equal parts, then which of the following is true.?

A

`alpha^3 - 6 alpha^2 + 16 = 0`

B

`3alpha^2 -8alpha^(3//2) + 8 =0`

C

`3alpha^2 - 8alpha + 8 =0`

D

`a^3 - 6 alpha^(3//2) - 16 = 0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the region {(x,y) : x^2 le y le x }

Find the area of the region {(x,y):x^2 le y le |x| }.

The area of the region {(x,y):x^(2)+y^(2) le 1 le x+y} , is

Find the area of the region [ (x,y) :x^2 le y le x )

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(0) le y le x, 0 le x le 1} into two equal parts, then

The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

Area of region {(x,y) in R^(2): y ge sqrt(|x+3|,)5y le x + 9 le 15}

The area of the region {(x,y):xyle 8,le yle x^2} is

Find the area of the region [x,y): x^2+y^2 le 1 le x+ y }