Home
Class 12
MATHS
Let 4alpha int(-1)^2 e^(-alpha|x|) dx = ...

Let `4alpha int_(-1)^2 e^(-alpha|x|) dx = 5`, then `alpha` =

A

`log_e (3/2)`

B

`log_e (4/3)`

C

`log_e sqrt2`

D

`log_e 2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

[" Let "4 alpha int_(-1)^(-)e^(-alpha|x|)dx=5" then "alpha=],[[" (A) "ln2," (B) "ln sqrt(2)],[" (C) "ln(3)/(4)," (D) "ln(4)/(3)]]

If int_(0)^(1)e^(x^(2))(x-alpha)dx=0, then

If int_(0)^(1) e^(x^(2))(x-alpha)dx=0 then

If 0 le alpha le 2pi and int_(0)^(alpha)cos x dx = cos 2alpha , the : alpha =

If I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0 , then alpha lies in the interval

If int_(0)^(1) (3x^(2) + 2x+ alpha)dx =0, " then " alpha=

If int_(0)^(alpha) (3x^(2) + 2x + 1) dx = 14, " then " alpha =

int(1)/(cos alpha+cos x)dx

Let a function f(x,alpha) be continuous for a<=x<=b and 0<=a<=d. Then,for any alpha in[c,d], if I(alpha)=int_(a)^(b)f(x,alpha)dx, then (d)/(d alpha)(I(alpha))=int_(a)^(b)rho(f(x,alpha))/(rho alpha)dx

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is: