Home
Class 12
MATHS
If f(a+b+1-x)=f(x), for all x where a an...

If `f(a+b+1-x)=f(x)`, for all x where a and b are fixed positive real numbers, the `(1)/(a+b) int_(a)^(b) x(f(x)+f(x+1))` dx is equal to :

A

`int_(a+1)^(b + 1) f(x + 1) dx`

B

`int_(a-1)^(b-1) f(x + 1) dx`

C

`int_(a+1)^(b+1) f(x) dx`

D

`int_(b-1)^(a-1) f(x) dx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=f(a+b-x), then int_(a)^(b) xf(x)dx is equal to

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(6-x)=f(x), for all x, then 1/5 int_2^3 x[f(x)+f(x+1)]dx is equal to :

Given f(x)=ax+b and f(f(f(x)))=27x+13 where a and b are real numbers then

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

Let a, b and c be fixed positive real numbers. Let f (x)=(ax)/(b+cx) for x le 1 . Then as x increases,