Home
Class 12
MATHS
Let J(n,m) = int0^(1//2) x^n/(x^m-1), AA...

Let `J_(n,m) = int_0^(1//2) x^n/(x^m-1), AA ngt mand n, m in N`. Consider a matrix `A= [a_(ij)]_(3xx3)` where
`a_(ij)={{:(J_(6 + i,3) - J_(i + 3, 3)",", ilt j),(0",",igtj):}`. Then `abs(adj A^(-1))` is :

A

`(15)^2 xx 2^34`

B

`(15)^2 xx 2^42`

C

`(105)^2 xx 2^36`

D

`(105)^2 xx 2^(38)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let J_(n,m) = int_0^(1//2) x^n/(x^m-1), AA ngt mand n, m in N . Consider a matrix A= [a_(ij)]_(3xx3) where a_(ij)={{:(J_(6 + i,3) - J_(i + 3, 3)",", ile j),(0",",igtj):} . Then abs(adj A^(-1)) is :

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

Find the value of a_(23)+a_(32) in the matrix A=[a_(ij)]_(3xx3) where a_(ij)={{:(|2i-j|,"if "igtj),(-i+2j+3,"if "iltj):}

The square matrix A=[a_(ij)" given by "a_(ij)=(i-j)^3 , is a