Home
Class 12
MATHS
The value of the integral int(-1)^(1)log...

The value of the integral `int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx` is equal to :

A

`1/2 log_e 2 + pi/4 - 3/2`

B

`2 log_e 2 + pi/4 - 1`

C

`log_e 2 + pi/2 - 1`

D

`2 log_e 2 + pi/2 -1/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

int_(0)^(1)log(sqrt(1-x)+sqrt(1+x))dx equals:

The value of the integral int_(0)^(3) (dx)/(sqrt(x+1)+sqrt(5x+1)) is

The value of the integral int _(a)^(b) (sqrt(x)dx)/(sqrt(x)+sqrt(1+b-x)) is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

int sqrt(e^(x)-1)dx is equal to

The value of the integral int_(0)^(1) (sqrt(x)dx)/((1+x) (1+3x ) (3+x)) is :

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is