Home
Class 12
MATHS
If x^2+y^2=1 then (y'=dy/dx, y''=(d^2y)/...

If `x^2+y^2=1` then `(y'=dy/dx, y''=(d^2y)/dx^2)`

A

`yy''-2(y')^2+1=0`

B

`yy''+(y')^2+1=0`

C

`yy''-(y')^2-1=0`

D

`yy''+2(y')^2+1=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=1 then (y'=(dy)/(dx),y''=(d^(2)y)/(dx^(2)))

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

e^(y)+xy=e then orderd pair ((dy)/(dx),(d^(2)y)/(dx^(2))) at y=1, is

Form the differential equation by eliminating A,B from y=e^(5x) (Ax+B) is (A) (d^(2)y)/dx^(2) +10(dy /dx) +25y=0 (B) (d^(2)y) /dx^(2) -10(dy /dx)+25y=0 (C) (d^(2)y) /dx^(2) +10(dy /dx) -25y=0 (D) (d^(2)y) /dx^(2) -10(dy /dx) -25y=0

y=x^(3)-4x^(2)+5 . Find (dy)/(dx) , (d^(2) y)/(dx^(2)) and (d^(3)y)/(dx^(3)) .

If ((dy)/(dx))^(2)+y^(2)=1(2a)/(y)," then "(d^(2)y)/(dx^(2))+y=

if (x-a)^(2)+(y-b)^(2)=c^(2) then (1+((dy)/(dx))^(2))/((d^(2)y)/(dx^(2)))=?

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to