Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(dy)/(dx)=e^x + cos x + x + tan x ` is

A

`y=e^x+sinx+x^2/2+logcosx+c`

B

`y=e^x+sinx+x^2/2+log sec x+c`

C

`y=e^x - sinx+x^2/2+logcosx+c`

D

`y=e^x - sinx+x^2/2+log sec x+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx)+y=e^(-x) is

The solution of the differential equation (dy)/(dx) = e^(x+y) is

The solution of the differential equation (dy)/(dx)=cos(x-y) is

The solution of the differential equation (dy)/(dx)+1=e^(x+y) , is

The solution of the differential equation : (dy)/(dx)=e^(x)+1 is :

The solution of the differential equation (dy)/(dx)-e^(x-y)=1 is

The solution of the differential equation (dy)/(dx) =sec x (sec x + tan x) is

The solution of the differential equation (dy)/(dx) = cos (y -x) +1 is

The solution of the differential equation (dy)/(dx) = sec x -y tan x is

Solution of differential equation e^((dy)/(dx))=x is