Home
Class 12
MATHS
For x in R, x != 0 if y(x) is a differen...

For `x in R, x != 0` if `y(x)` is a differentiable function such that `x int_(1)^(x)y(t)dt = (x+1) int_(1)^(x)ty(t)dt`, then `y(x)` equals (where C is a constant)

A

`Cx^3 e^(1//x)`

B

`C/(x^2)e^(-1//x)`

C

`C/xe^(-1//x)`

D

`C/x^3e^(-1//x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For x in x!=0, if y(x) differential function such that x int_(1)^(x)y(t)dt=(x+1)int_(1)^(x)ty(t)dt then y(x) equals: (where C is a constant.)

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

Let f(x)=int_(0)^(1)|x-t|dt, then

If f(x)= int_(-1)^(x)|t|dt ,x>=-1 then