Home
Class 12
MATHS
(x^(2)+y^(2))dy=xy dx. If y(x(0))=e, y(1...

`(x^(2)+y^(2))dy=xy dx`. If `y(x_(0))=e, y(1)=1`, then value of `x_(0)=`

A

`sqrt3e`

B

`sqrt(e^2-1/2)`

C

`sqrt((e^2-1)/2)`

D

`sqrt((e^2+1)/2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

Let y = y(x) be the solution of the differential equation e^(x)sqrt(1-y^(2))dx+((y)/(x))dy=0,y(1)=-1 . Then the value of (y(3))^(2) is equal to :

If 2x^2dy + (e^y-2x)dx=0 and y(e)=1 then find the value of y(1)

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

If y = y (x) is the solution of the differential equation (5 + e^(x))/(2 + y) * (dy)/(dx) + e^(x) = 0 satisfying y(0) = 1 , then a value of y (log _(e) 13) is :

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is