Home
Class 12
MATHS
Solution of the differential equation ...

Solution of the differential equation
`(1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0` is :

A

`(x-2)=ke^(tan^(-1))y`

B

`2xe^(tan^(-1)y)=e^(2tan^(-1)y)+k`

C

`x^(tan^(-1)y)= tan^(-1)y+k`

D

`xe^(2tan^(-1)y)= e^(tan^(-1)y)+k`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of differential equation (1+y^(2))+(x-e^(tan^(-1)y))(dy)/(dx)=0 , is

The solution of differential equation (1+y^(2))+((x-2e^(tan^(-1)y))dy)/(dx)=0 is (x-2)=ke^(tan^(-1)y)xe^(tan-1)y=e^(2)tan^(-4)y+kxe^(tan^(-1)y)=tan^(-1)y+kxe^(2tan^(-1)y)=e^(2tan^(-1)y)+k

The solution of the differential equation (1+y^2)+(x-e^(tan^-1y))dy/dx=0 is (A) x e^(2 tan^-1y)=e^(tan^-1y)+k (B) (x-2)=k e^(-tan^-1y) (C) x e^(tan^-1y)=e^(2 tan^-1y)+k (D) x e^(tan^-1y)=tan^-1y+k

Solve the differential equation: (i) (1+y^(2))+(x-e^( tan ^(-1)y))(dy)/(dx)=0 (ii) x(dy)/(dx)+cos^(2)y=tan y(dy)/(dx)

Solution of the differential equation y dx+(x-y^(2))dy=0 is

Find the general solution of the following differential equation : (1y2)+((x-e^"tan"^((-1_"y")))dy)/(dx)=0