Home
Class 12
MATHS
f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x)...

`f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x))))` then

A

`(1+x)^2f'(x) +2(f(x))^2=0`

B

`(1-x)^2f'(x) +2(f(x))^2=0`

C

`(1-x)^2f'(x) -2(f(x))^2=0`

D

`(1+x)^2f'(x) -2(f(x))^2=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) then at x=1,f'(x) is equal to

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) ,then at x=1,f'(x) is equal to

Let f(x) = cos(tan^(-1) ( sin ( cot^(-1)x))) . The simplest form of f(x) can be written as ((x^(2) +A)/(x^(2) +B))^(1//2) . Then the value of (A + B) is ………………

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Let g(x)=sqrt(sin^(-1)(cos(tan^(-1)x))+cos^(-1)(sin(cot^(-1)x))) ,then int_(-sqrt((pi)/(2)))^(sqrt((pi)/(2)))g(x)dx equals

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))