Home
Class 12
MATHS
Evaluate : lim( n -> oo ) sqrt(n)/( sqr...

Evaluate :
`lim_( n -> oo ) sqrt(n)/( sqrt(n) + sqrt( n + 1 ))`

A

1

B

`1//2`

C

0

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_ (n rarr oo) (sqrt (n ^ (4) +1) -sqrt (n ^ (4) -1))

If nEN and a_(n)=2^(2)+4^(2)+6^(2)+....+(2n)^(2) and b=1^(2)+3^(2)+5^(2)+...(2n-1)^(2). Find the value lim_(n rarr oo)((sqrt(a_(n))-sqrt(b_(n)))/(sqrt(n)))

lim_ (n-> oo) (sqrt (n))/(sqrt (n)+sqrt (n+1)) = (i) 1 (ii) 1/2 (iii) 0 (iv) infty

Find underset( n rarr oo) ("lim") (sqrt( n^(2) + 1)+ sqrt( n ) )/( sqrt( n ^(2) + 1)- sqrt( n ) )

Evaluate: lim_(n rarr oo)((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+...+(1)/(sqrt(3n^(2))))

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))