Home
Class 12
MATHS
The interval for which sin^(- 1)sqrt(x)+...

The interval for which `sin^(- 1)sqrt(x)+cos^(- 1)sqrt(x)=pi/2` holds

A

`[0,oo)`

B

`[0,3]`

C

`[0,1]`

D

`[0,2]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

The sum of solutions of the equation 2 sin^(-1) sqrt(x^(2)+x+1)+cos^(-1) sqrt(x^(2)+x)=(3pi)/(2) is :

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The set of vlues of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

Number ofsolution(s) ofthe equation cos^(-1)sqrt(x)-sin^(-1)sqrt(x-1)+cos^(-1)sqrt(1-x)-sin^(-1)((1)/(sqrt(x)))=(pi)/(2)

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is