Home
Class 12
MATHS
Given f(x)=log(10)((1+x)/(1-x)) and g(x)...

Given `f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2))`, then fog(x) equals

A

`3f(x)`

B

`(f(x))^(3)`

C

`2f(x)`

D

`3g(x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

Given f(x)=log[((1+x))/((1-x))]andg(x)=((3x+x^(2)))/((1+3x^(2))) , then what is f[g(x)] equal to ?

If f(x)=log_(e)((1+x)/(1-x)),g(x)=(3x+x^(3))/(1+3x^(2))andgof(t)=g(f(t)) then what is g^(@)f((e-1)/(e+1)) equal to?

If f (x) = 8x ^(3), g (x) =x ^(1/3), then fog (x) is

g(x)= (x-(1/2))/x-1 , f(x)=2x-1 , then fog(x) is