Home
Class 12
MATHS
Let the function f(x)=x^(2)+x+sinx- cosx...

Let the function `f(x)=x^(2)+x+sinx- cosx+log(1+|x|)` be defined on the interval [0,1]. The odd extension of f(x) to the interval [-1,1] is

A

`x^(2)+x+"sin"x+cosx-log(1+|x|)`

B

`-x^(2)+x+"sin"x+cosx-log(1+|x|)`

C

`-x^(2)+x+"sin"x-cosx+log(1+|x|)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

Let the function f(x)=3x^(2)-4x+5log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

Let f(x)=3sin^(3)x+4x-sin|x|+log(1+|x|) beidd euen adefined on the interval [0,1]. The even extensionof f(x) to the interval [-1,0] is

Let the function f(x)=x^(2)+x+sin x-cos x+log(1+|x|) be defined on the interval [0,1]. Define functions g(x) and h(x) in [-1,0] satisfying g(-x)=-f(x) and h(-x)=f(x)AA x in[0,1]

Let f(x)=x^(2)+x be defined on the interval [0,2). Find the odd and even extensions of f(x) in the interval [-2,2] .

f(x)=log x, interval [1,e]

Let f(x) = e^x + sin x be defined on the interval [–4, 0]. Find the odd and even extension of f(x) in the interval [–4, 4].

The function f(x) is defined on the interval [0,1]. Find the domain of definition of the functie f(sin x)

If the function f(x)=2x^(2)+3x-m log x is monotonic decreasing in the interval (0,1) then the least value of the parameter m is