Home
Class 12
MATHS
The value of underset(x to oo) ("lim") (...

The value of `underset(x to oo) ("lim") (1 + 2 + 3 … + n)/(n^(2))` is

A

`oo`

B

`1//2`

C

2

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

Find underset( n rarr oo )("lim") ( ( 2 n^(3))/( 2n^(2) + 3)- ( 1+ 5n^(2) )/( 5n + 1))

(i) Let h (x) = underset(x to oo)lim(x^(2n) f(x) + g(x))/(1+x^(2n)) , find h(x) in terms of f(fx) and g(x) (ii) without using L Hospital rule or series expansion for e^(x) evaluate underset(x to 0) lim (e^(x) -1-x)/x^(2) (iii) underset(n to oo) lim [ e^(1/n)/n^(2) + 2 ((e^(1/n))^(2))/n^(2) + 3. ((e^(1/n))^(3))/n^(2)+.......+ n((e^(1/n))^(n))/n^(2)] (iv) underset(x to 0)lim[ (a sin x)/x ] + [ (b tan x)/x] Where a,b are inegers and [] denotes integral part. (v) underset(x to a)lim (sinx/sina)^(1/(x-a))