Home
Class 12
MATHS
If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2...

If `f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2`, then the value of `lim_(xto a) (g(x)f(a)-g(a)f(x))/(x-a)`, is

A

3

B

5

C

0

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a) =2, f'(a)=1, g(a) =-1 , g' (a)=2 , then the value of lim_(xrarr a) (g(x)f(a)-g(a)f(x))/(x-a) , is

If (a)=2,f'(a)=1,g(a)=-1,g'(a)=2f(a)=2,f'(a)=1,g(a)=-1,g'(a)=2 then the value of lim_(x rarr a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) (1)/(5)(c)5(d) none of these

If f(a)=2,g(a)=-1,f'(a)=1, g'(a)=2 then the value of lim_(x->0) (f(x).g(a)-f(a).g(x))/(x-a)= (a) 5 (b) -5 (c) -6 (d) non of these

f(a)=2,f'(a)=1,g(a)=-1,g'(a)=-2 then lim_(x rarr oo)(g(x)f(a)-g(a)f(x))/(x-a), is

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).