Home
Class 12
MATHS
Value of lim(n->oo)(1^3 +2^3 +3^3...+n^3...

Value of `lim_(n->oo)(1^3 +2^3 +3^3...+n^3)/(n^4)`

A

`1//2`

B

`1//3`

C

`1//4`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to