Home
Class 12
MATHS
If lim(x rarr 0) ("log(a+x)- "loga")/(x)...

If `lim_(x rarr 0) ("log(a+x)- "loga")/(x) + k lim_( xrarr 0)(log x-1)/(x-e)=1` then

A

`k=e(1-(1)/(a))`

B

`k=e(1+a)`

C

`k=e(2-a)`

D

The equality is not possible

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)x log(sin x)

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr0)[(log(a+x)-log a)/(x)]=...

lim_(x rarr0)x log x .

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)((log(4-x)-log(4+x))/(x))

If lim_(x rarr0)(log(3+x)-log(3-x))/(x)=

"lim_(x rarr0)[(log(2+x)-log(2-x))/(x)]

lim_(x rarr0)[(log(1+7x)-log(1+3x))/(x)]

lim_(x rarr0)(log_(e)(1+x))/(x)