Home
Class 12
MATHS
underset(alphatobeta)(lim)[(sin^(2)alpha...

`underset(alphatobeta)(lim)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))]` is equal to

A

0

B

1

C

`"sin"beta//beta`

D

`"sin"2beta//2beta`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(alpha to beta)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))] is equal to

Let f(beta)=lim_(alpha rarr beta)(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2)) them f((pi)/(4)) greater then-

If cos(alpha+beta)=0 then sin^(2)alpha+sin^(2)beta

Evaluate the following limit : (lim)_(alpha->beta)[(sin^2alpha-sin^2beta)/(alpha^2-beta^2)]\ \

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If cot(alpha+beta)=0, then sin(alpha+2 beta) is equal to

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to