Home
Class 12
MATHS
If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge...

If `x_(1)=3` and `x_(n+1)=sqrt(2+x_(n))" ",nge1,` then `underset(ntooo)limx_(n)`is

A

`-1`

B

2

C

`sqrt5`

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n>=1, then backslash(lim backslash)_(x rarr oo)x_(n) is (a) -1 (b) 2(c)sqrt(5)(d)3

If x_(1)=1 and x_(n+1)=(1)/(x_(n))(sqrt(1+x_(n)^(2))-1),n>= then x_(n) is equal to

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1 , show that a_(n+2)gea_(n+1) and if a lim l as n to oo the evaluate lim_(ntooo)a_(n)

If quad sqrt(3) and x_(n+1)=(x_(n))/(1+sqrt(1+x_(n)^(2))),AA n in N then lim_(n rarr oo)2^(n)x_(n) is equal to ,AA n in N

Let x_(0)=2(cos)(pi)/(6) and x_(n)=sqrt(2+x_(n-1))*n=1,2,3 find lim_(n rarr oo)2^(n+1)*sqrt(2-x_(n))

Let x_(1)=1 and x_(n+1)=(4+3x_(n))/(3+2x_(n)) for n>=1 If lim_(x rarr oo)x_(n) exists finitely,then the limit is equal to

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(m+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is