Home
Class 12
MATHS
If G(x) = - sqrt(25 -x^(2)), then lim(x ...

If `G(x) = - sqrt(25 -x^(2))`, then `lim_(x to 1) (G(x)-G(1))/(x-1)` has the value of:

A

`(1)/(24)`

B

`1/5`

C

`-sqrt(24)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x)=-sqrt(25-x) . Then lim_(xrarr1) (G(x)-G(1))/(x-1) has the value

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

If G(x ) = - sqrt( 25-x^2) lim_( x - > 1 ) (G(x) - G(1 ) )/( x - 1 ) = 1/sqrt(A) then find A

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :