Home
Class 12
MATHS
lim(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)=...

`lim_(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)=`

A

0

B

1

C

`-1`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1),x!=0

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1)

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(xrarr0^(+))(e^(x)+x)^((1//x))

Evaluate the following limits: lim_(xrarr0)((e^(4x)-1)/(x))

lim_(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)

Evaluate the following limits: lim_(xrarr0)((e^(x)-x-1)/(x))