Home
Class 12
MATHS
If Sn=sum(k=1)^n ak and lim(n->oo)an=a ,...

If `S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a ,` then `lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k)` is equal to

A

0

B

`a`

C

`sqrt(2)a`

D

2a

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n),=sum_(k=1)^(n)a_(k) and lim_(n rarr oo)a_(n)=a, then lim_(n rarr oo),(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k)) is equal to

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

Let be a sequence such that lim_(x rarr oo)a_(n)=0. Then lim_(n rarr oo)(a_(1)+a_(2)++a_(n))/(sqrt(sum_(k=1)^(n)k)), is

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

If lim_ (n rarr oo) ((n!) / (N ^ (n))) ^ ^ ((pn + 1) / (nq + 1)) = e ^ (- 5) then lim_ (n rarr oo) ( sum_ (n = 1) ^ (n) (pn + q)) / (sum_ (n = 1) ^ (n) (n)) is equal to

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to