Home
Class 12
MATHS
The value of the constant alpha and beta...

The value of the constant `alpha` and `beta` such that `lim_(x rarr oo) ((x^(2)+1)/(x+1) - alpha x - beta)` =0 are respectively

A

`(1,1)`

B

`(-1,1)`

C

`(1,-1)`

D

`(0,1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta in R such that lim_(x rarr0)(x^(2)sin(beta x))/(alpha x-sin x)=1* Then 6(alpha+beta) equals

lim_ (x rarr0) (e ^ (ax) -cos alpha x) / (e ^ (beta x) -cos beta x)

lim_(x rarr0)(e^(alpha x)-e^(beta x))/(sin alpha x-sin beta x)=

Find the value of alpha so that lim_(x rarr0)(1)/(x^(2))(e^(alpha x)-e^(x)-x)=(3)/(2)

Let alpha, beta in R " be such that " lim_( x to 0) (x^(2)sin (beta x))/(ax - sin x) = 1."Then,"6(alpha+beta)"equals"

lim_(x rarr00)(sin alpha x)/(sin beta x)=(alpha)/(beta)

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is

If alpha and beta are the roots of x^(2) - (a+1)x + 1/2 (a^(2) + a+1) = 0 then alpha^(2) + beta^(2) = "_____" .