Home
Class 12
MATHS
lim(xto0) (e^(tanx)-e^x)/(tanx-x)=...

`lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=`

A

1

B

e

C

`e^(-1)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

lim_(x rarr 0) (e^(tanx)-e^x)/(tanx-x)=

Evaluate the following limit: (lim)_(x->0)(e^(t a n x)-e^x)/(tanx-x)

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

Applying the L.Hospital rule , find the limits of the following functions : lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sin x)

Applying the L.Hospital rule , find the limits of the following functions : lim_(xto0) (e^(ax)-e^(-2ax))/(ln(1+x))

Evaluate the following limits: lim_(xrarr0)((e^(tanx)-1))/(tanx)

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).