Home
Class 12
MATHS
If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4) and h...

If `f(x)=(2)/(x-3),g(x)=(x-3)/(x+4) and h(x)=(2(2x+1))/(x^(2)+x-12)`, then `lim_(x to 3)[f(x)+g(x)+h(x)]` is

A

`-2`

B

`-1`

C

`-(2)/(7)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4), and h(x)=-(2(2x+1))/(x^(2)+x-12) then lim_(x rarr3)[f(x)+g(x)+h(x)] is (a) -2(b)-1 (c) -(2)/(7) (d) 0

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4) and h(x)=-(2(2x+1))/(x^(2)+x-12), then find lim_(x rarr3)[f(x)+g(x)+h(x)]

f(x)={x^(2)+4,x 2 and g(x)={x^(2),x 2 then lim_(x rarr2)f(x)g(x) equals

If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x) , then f(g(h(x))) is :

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f(x)=(1)/(x),g(x)=(1)/(x^(2)), and h(x)=x^(2), then f(g(x))=x^(2),x!=0,h(g(x))=(1)/(x^(2))h(g(x))=(1)/(x^(2)),x!=0, fog (x)=x^(2) fog(x) =x^(2),x!=0,h(g(x))=(g(x))^(2),x!=0 none of these

Let f(x)=(1)/(1-x),g(x)= fofofofofofof (x) and h(x)=tan^(-1)(g(-x^(2)-x)) then find lim_(x rarr oo)sum h(r)