Home
Class 12
MATHS
The value of lim(xto0)(x cosx-log(1+x))/...

The value of `lim_(xto0)(x cosx-log(1+x))/(x^(2))` is

A

`1//2`

B

0

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0)(e^(x)-e^(x cosx))/(x+sinx) is

The value of lim_(xrarr0) (1+sinx-cosx+log(1-x))/(x^3) , is

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals