Home
Class 12
MATHS
If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) ...

If `f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2)))`, then `lim_(x to a)(f(x)-f(a))/(g(x)-g(a)),0 lt a lt (1)/(2)` is

A

`(3)/(2(1+a^(2)))`

B

`(3)/(2(1+x^(2)))`

C

`3//2`

D

`-3//2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cot^(-1)((3x-x^(3))/(1-3x^(2))) and g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x rarr a)(f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 lt 1/2 is :

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4), and h(x)=-(2(2x+1))/(x^(2)+x-12) then lim_(x rarr3)[f(x)+g(x)+h(x)] is (a) -2(b)-1 (c) -(2)/(7) (d) 0

If f(x)={(3x-1),x>=1,(2x+3),x =2} then lim_(x rarr2)f(g(x))=

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to