Home
Class 12
MATHS
The limit of [1/(x^2)+((2013)^x)/(e^x-1...

The limit of `[1/(x^2)+((2013)^x)/(e^x-1)-1/(e^x-1)]` as `x->0`

A

Approaches `+oo`

B

Approaches `-oo`

C

Is equal to `log_(e)(2013)`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The limit of [(1)/(x^(2))+((2013)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as x rarr0

The limit of [(1)/(x^(2))+((2)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as x rarr0

f(x)=(e^(2x)-1)/(e^(2x)+1) is

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

The limit of x sin(e^((1)/(x)))asx rarr0

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

int_(0)^(1)(e^(x))/(1+e^(2x))dx

The limit of x sin (e^(-1//x)) as x rarr0

int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx

The value of lim_(x rarr 0) (1-cos2x)/(e^(x^(2))-e^(x)+x) is