A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Similar Questions
Explore conceptually related problems
Recommended Questions
- Evaluate underset(xto0)lim(cosx)^(cotx).
Text Solution
|
- Evaluate lim(xto0) (cosx)^(cotx).
Text Solution
|
- Evaluate :underset(xrarr0)"lim"(cosec"x-cotx)/(x)
Text Solution
|
- Evaluate underset(xrarr0)lim[cosx/(pi-x)] ?
Text Solution
|
- Evaluate underset(xrarr0)lim((1-cosx)/(x)) ?
Text Solution
|
- Evaluate: ("lim")(xto0)(1-"cos"(1-cosx)dot)/(x^4)
Text Solution
|
- Evaluate: ("lim")(xrarr0)(cosx)^(cotx)
Text Solution
|
- Evaluate lim(xto0) (cosx)^(cotx).
Text Solution
|
- lim(xto0)(cosx)^(cotx)=
Text Solution
|