Home
Class 12
MATHS
If the function f(x) = {((x^(2)-(A+2)x+A...

If the function `f(x) = {((x^(2)-(A+2)x+A)/(x-2), ",", x != 2),(2, ",","for" x = 2):}`
is continuous at x = 2, then

A

A=0

B

A=1

C

A=-1

D

A=2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) ={((x^(2)-(k+2)x+2k)/(x-2),"for " x ne 2),(2," for x =2):} is continuous at x =2, then k is equal to

If f(x) = {{:((x^(2)-(a+2)x+2a)/(x-2)",",x ne 2),(" "2",",x = 2):} is continuous at x = 2, then a is equal to

The function f(x) = {(x+2, ",",1 le x lt 2),(4, ",", x = 2 ),(3x-2, ",", x gt 2 ):} is continuous at

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ", if " x = 2 ) :} is continuous at x = 2 , then

if the function f(x)=(x^(2)-(a+2)x+a)/(x-2) for x!=2 and f(x)=2 for x=2 is continuous function at x=2 then value ofa is:

If the function f(x) = {(kx + 5 ", when " x le 2),(x -1 ", when " x gt 2):} is continuous at x = 2 then k = ?

If the function f(x)=(x^(2)-(A+2)x+A)/(x-2), for x!=2 and f(2)=2 is continuous at x=2, then find the value of A.

If the function defined by : f(x)={{:(2x-1", "xlt2),(a", "x=2),(x+1", "xgt2):} is continuous at x = 2, find the value of 'a'. Also discuss the continuity of f(x) at x = 3.